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Abstract Seed weight, measured as mass per seed, is an

important yield component of soybean and is generally

positively correlated with seed yield (Burton et al, Crop Sci

27:1093, 1987). In previous reports, quantitative trait loci

(QTL) associated with seed weight, were identified in

single genetic background. The objective of the present

study was to identify QTL and epistatic QTL underlying

soybean seed weight in three RIL populations (with one

common male parent ‘Hefeng25’) and across three differ-

ent environments. Overall, 18, 11, and 17 seed weight QTL

were identified in HC (‘Hefeng25’ 9 ‘Conrad’), HM

(‘Hefeng25’ 9 ‘Maple Arrow’), and HB (‘Hefeng25’ 9

‘Bayfield’) populations, respectively. The amount of phe-

notypic variation explained by a single QTL underlying

seed weight was usually less than 10 %. The environment

and background-independent QTL often had higher addi-

tive (a) effects. In contrast, the environment or back-

ground-dependent QTL were probably due to weak

expression of QTL. QTL by environment interaction

effects were in the opposite direction of a effects and/or

epistasis effects. Four QTL and one QTL could be identi-

fied (2.0 \ LOD \ 9.06) in the HC and HB populations,

respectively, across three environments (swHCA2-1,

swHCC2-1, swHCD1b-1, swHCA2-2 (linked to Satt233,

Satt424, Satt460, Satt428, respectively) and swHBA1-

1(Satt449). Seven QTL could be identified in all three RIL

populations in at least one location. Two QTL could be

identified in the three RIL populations across three envi-

ronments. These two QTL may have greater potential for

use in marker-assisted selection of seed weight in soybean.

Introduction

Seed weight, measured as mass per seed, is an important

yield component of soybean and was generally positively

correlated with seed yield (Burton et al. 1987). Seed weight

is a quantitative trait, which is mainly inherited with the

additive effect (Brim and Cockerham 1961). Most of the

breeding strategies for developing soybean cultivars take

advantage of additive gene actions (Hartwig 1973; Fehr

1987; Cooper 1990). However, traditional plant improve-

ment has relied on phenotypic selection of populations from

crosses between commercial cultivars and/or experimental

lines (Stuber et al. 1992; Specht et al. 1999; Stefaniak et al.

2005).

The development of consensus molecular maps in soy-

bean (Song et al. 2004; Choi et al. 2007; Hyten et al. 2010;

Song et al. 2010) has facilitated the identification of

common quantitative trait loci (QTL) controlling important

quantitative traits in many soybean populations (Hyten

et al. 2004). Through molecular genetic linkage maps and

QTL analysis, it is possible to estimate the number of QTL

controlling genetic variation. Statistical analyses, such as

ANOVA and interval mapping, can estimate the gene

actions and phenotypic effects (Lander et al. 1987; Basten

et al. 1996). Combined analyses allowed pleiotropic and/or
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epistatic interactions to be estimated (Lark et al. 1995; Yan

2001). Through selection with molecular markers, the

results of QTL analyses can be used in soybean breeding,

referred as marker-assisted selection (MAS). A common

approach in MAS is to map QTL in a small sample of

progeny from a cross, choose a marker linked to the tar-

geted QTL, and apply MAS in a larger set of progeny from

the same cross (Prabhu et al. 1999; Ken et al. 2005). This

has been done for many traits, including agronomic traits in

barley (Zhu et al. 1999), disease resistance in soybean

(Prabhu et al. 1999), and for blight resistance in chickpea

(Millan et al. 2003) and rice (Davierwala et al. 2001).

However, many studies have shown that the effects of QTL

underlying agronomic traits are not always detected in

other genetic backgrounds for soybean (Specht et al. 1999;

Hyten et al. 2004) and many other crops (McKendry et al.

1996; Toojinda et al. 1998; Ken et al. 2005). This phe-

nomenon is a major obstacle to the efficient use of MAS in

plant breeding.

In the past two decades, many studies have focused on

mapping of QTL influencing soybean seed weight

[reviewed by Hyten et al. (2004)]. In most of these reports,

the phenotypic values of traits in single genetic background

were used for QTL analysis. Few of these studies have used

common parents among their multiple genetic backgrounds

(Orf et al. 1999; Hyten et al. 2004), which is a very

important factor influencing quantitative traits like yield

components (Specht et al. 1999; Liao et al. 2001; Hyten

et al. 2004; Zhang et al. 2004). Many results indicated that

yield of soybean is controlled by a series of QTL with different

expression in different genetic populations or environments.

Though genetic background effects on quantitative traits have

been well documented in many crops including tomato

(Tanksley and Hewitt 1988), rice (Li et al. 1997, 1998), soy-

bean (Lark et al. 1995; Orf et al. 1999), and maize (Doebley

et al. 1995), the QTL associated with seed weight had been

less frequently reported in multi-genetic background by 2011

(Orf et al. 1999; Hyten et al. 2004).

The objective of this study was to identify stable QTL and

epistatic QTL effects for seed weight of soybean in different

genetic backgrounds and environments, using three popula-

tions with one common male parent, ‘Hefeng 25’, to compare

the number and location of QTL and epistatic QTL mapped

across different populations and environments, and to deter-

mine QTL 9 environment interactions.

Materials and methods

Plant materials

‘Hefeng 25’ 9 ‘Conrad’ (HC, 140 RILs of F4:5), ‘Hefeng

25’ 9 ‘Maple Arrow’ (HM, 149 RILs of F5:6), and ‘Hefeng

25’ 9 ‘Bayfield’ (HB, 144 RILs of F5:6) were used to

evaluate seed weight across multiple environments. ‘Hef-

eng 25’, a local variety in Northeastern China, was selected

as the common parent of the three soybean populations due

to higher seed weight and other good agronomic traits. The

RILs and their parents were grown in a randomized com-

plete block design at Harbin in three locations during 2007,

2008, and 2009 in four row plots. The rows were 3 m long,

90 cm apart, and there was a space of about 6 cm between

two plants in a row. In each plot, 20 plants from one

genotype were grown as seed donors that were later used to

analyze seed weight after maturity. Seeds were dried for

30 min in oven at 105 �C and then continuously dried at

50–70 �C until the seed weight was stable. All dried

samples were weighed.

Genetic linkage map

The genetic map of the HC RIL population constructed

with 164 SSR markers encompassed 12 linkage groups

(LGs) (Li et al. 2010a). The HC map covered about

3160.28 cM of the soybean genome with a mean distance

of 19.27 cM between markers. The HM RIL population

map is composed of 19 LGs constructed with 109 SSRs

with a mean distance of 16.96 cM between markers (Li

et al. 2009). The HB RIL population map included 107

SSRs in 20 LGs with a mean distance of 14.21 cM between

markers (Li et al. 2010b).

Data analysis

QTL were identified by single-factor analysis of variance

(PROC. GLM. SAS), interval mapping (Lander et al. 1987)

and composite interval mapping (Basten et al. 1996) as

described by Primomo et al. (2005). Significant QTL

(LOD [ 2.0) were recorded based on the mean value of

individual environment.

For interactions locus main effects were considered for

linear models if they were significant at P B 0.01. Signif-

icant loci on the same LG were tested by two-factor

analysis of variance without interactions. If both loci were

significant at P B 0.05 in the two-factor model, they would

both be considered for linear models. Otherwise, the locus

with the larger individual R2 value was chosen to represent

the effect of the putative QTL on the LG.

Two-way analysis of variance was also used to detect

significant (P \ 0.01) epistatic interactions between

markers. The nomenclature of QTL included four parts.

For example, QTL swHCA1-1 is composed of sw (seed

weight), HC (the RIL population), A1 (the linkage group),

and one (the first QTL in the LG).

GT (Genotype by Trait) biplot methodology (Yan 2001)

was employed to analyze the interactions between QTL
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and different environments in the HC, HM, and HB popula-

tions, based on the formula: Tij-Tj/Sj = k1fi1sj1 ? k2fi2s-

j2 ? eij, where Tij is the average value of QTLi for

environment j; Tj is the average value of environment j over all

QTL of single population, Sj is the standard deviation of

environment j among the QTL average; fi1 and fi2 are the

PC1 (first principle component) and PC2 (second principle

component) scores, respectively. For QTLi; sj1 and sj2 are

the PC1 and PC2 scores, respectively, for environment j; and

eij is the residual of the model associated with the QTLi in

environment j.

Results

Phenotypic variation

Phenotypic values of 100-seed weight among different

populations across three environments are shown in

Table 1. The differences between the two parents were

significant in the three different populations across three

environments. The seed weight for ‘Hefeng 25’ was 2–5 g

higher than those of ‘Conrad’, ‘Maple Arrow’ and ‘Bay-

field’. In contrast, 100-seed weight variations among the

RIL populations were not significantly different. Both

skewness and kurtosis values of 100-seed weight distribu-

tions were less than 1.0 for the three RIL populations in

most environments, suggesting that the segregations of this

trait fit a normal distribution model.

Analysis of QTL in different environments and genetic

backgrounds

Eighteen, 11, and 17 QTL were found to be associated with

seed weight in HC, HM, and HB populations, respectively

(Table 2). The QTL in HC, HM, and HB populations could

explain 3.86–31.09, 5.75–23.89, and 3.23–32.76 % of the

phenotypic variations at Harbin in 3 years, respectively. QTL

swHCB1-1 (Sat_123), swHMK-1 (Satt555), and swHBD1a-1

(Satt168) explained the largest amount of phenotypic varia-

tion (31.09, 23.89, and 32.76 %). Four QTL swHCA2-1;

swHCC2-1; swHCD1b-1; swHCA2-2 (linked to Satt233,

Satt424, Satt460, Satt428, respectively) in the HC population,

and one QTL swHBA1-1(Satt449) in the HB population could

be identified in all three environments.

In the present work, eight QTL that derived beneficial

alleles from ‘Hefeng 25’, could be detected in three different

populations [Satt233 located in LG A2 (Chromosome (Gm)

8), Satt460 in LG C2 (Gm 6), Satt428 in LG D1b (Gm 2),

Satt302 in LG H (Gm 12), Satt354 in LG I (Gm 20), Satt555 in

LG K (Gm 9), Satt527 in LG L (Gm 19), and Satt153 in LG O

(Gm 10)].

Six QTL of Conrad origin associated with Sat_181 in

LG A2 (Gm8), Sat_123 in LG B1 (Gm 11), Satt489 in LG

C2 (Gm 6), Satt277 in LG C2 (Gm 6), Satt301 in LG D2

(Gm 17), and Satt380 in LG J (Gm 16).

One QTL (Satt150 in LG M, Gm 7) from ‘Maple Arrow’ was

detected, and five QTL from ‘Bayfield’ [Satt449 in LG A1 (Gm

5), Satt596 in LG B2 (Gm 14), Satt190 in LG C1 (Gm 4), Satt277

in LG C2 (Gm 6), and Satt168 in LG D1a (Gm 1)] were found.

QTL 9 environment interaction across

multi-environments and genetic backgrounds

Eighteen, 11, and 17 QTL in HC, HM, and HB population

had additive main effect (a) and/or additive 9 environ-

ment interaction effect (ae) at some specific environments

in 14, 11, and 17 LGs (Table 3).

Eight QTL (swHCA2-1, swHCA2-2, swHCC2-1,

swHCD1b-1, swHCD2-1, swHCH-1, swHCK-1, swHCO-

Table 1 Statistical analysis of seed weight (100-seed weight) for parents and the three RIL populations at different environments

Populations Environments Parents Recombinant inbred lines

Range Mean CV Skewness Kurtosis

Hefeng 25 9 Conrad Hefeng 25 Conrad

2007 Harbin 20.57 17.04 11.24–23.92 18.74 54.39 -1.29 0.78

2008 Harbin 21.01 18.13 13.76–24.32 19.12 37.89 0.86 0.59

2009 Harbin 20.34 17.56 11.29–22.39 18.84 47.89 0.30 0.77

Hefeng 25 9 Maple Arrow Hefeng 25 Maple Arrow

2007 Harbin 20.57 18.49 14.67–22.58 17.89 38.97 1.03 0.94

2008 Harbin 21.01 16.02 10.87–22.39 18.87 57.39 0.97 0.67

2009 Harbin 20.34 16.98 12.39–21.28 17.76 44.76 0.82 -0.74

Hefeng 25 9 Bayfield Hefeng 25 Bayfield

2007 Harbin 20.57 15.47 11.78–22.28 18.20 57.30 0.76 0.95

2008 Harbin 21.01 18.53 12.73–22.76 17.32 62.29 -0.84 0.96

2009 Harbin 20.34 16.98 14.39–23.37 18.32 58.39 0.89 0.79
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1) from HC population, four QTL (swHMC2-1, swHMI-1,

swHML-1 and swHMM-1) from HM population, and nine

QTL (swHBA1-2, swHBA2-1, swHBC1-1, swHBC2-1,

swHBC2-2, swHBD1b-1, swHBH-1, swHBK-1, swHBL-1)

from HB population, contributed the allele that increased

seed weight through significant a effects. Three QTL

(swHCB1-1, swHCC2-2, swHCI-1) originating from HC

population, four QTL (swHMB1-1, swHMD1a-19, swHMH-1

and swHMO-1) origininating from HM population, and two

QTL (swHBA2-2 and swHBB2-1) originating from HB pop-

ulation, contributed the allele that decreased seed weight

through significant a effects, respectively.

The impact of ae effects on QTL was different at dif-

ferent years for these three populations. For example, QTL

swHCA2-1 of HC population, increased seed weight at

Harbin in 2007 and 2009, but decreased seed weight at

Harbin in 2008. Six QTL (swHCA2-3, swHCC2-3,

swHCD1a-1, swHCE-1, swHCJ-1, swHCL-1) of HC pop-

ulation, three QTL (swHMA2-1, swHMD1b-1 and

swHMK-1) of HM population, and five QTL (swHBB1-1,

swHBD1a-1, swHBE-1, swHBI-1, swHBO-1) of HB pop-

ulation, had only significant ae effects, but no significant

a effects. Other QTL in these three populations had both

significant a effects and significant ae effects.

Epistatic analysis of QTL across multi-environments

Forty, 16. and 20 epistatic pairwise QTL were detected in

HC, HM, and HB population in different environments,

respectively (Table 4). Of them, 18, 5 and 5 epistatic pairs

of QTL, derived from HC, HM and HB populations, were

beneficial for the increase of seed weight through signifi-

cant aa effects. Seven, five and four epistatic pairs of QTL

trended to decrease seed weight through significant aa

effects in HC, HM, and HB population, respectively

(Table 4).

The epistasis 9 environment interaction effect (aae)

was an important component of the total QTL 9 environ-

ment (QE) interaction effects. Six, four, and five pairs of

QTL were found with only epistatic effects (aa) in HC,

HM, and HB populations, respectively. Fifteen, five, and

eleven pairs had only aae effects in HC, HM, and HB

populations, and other pairs of epistatic QTL had both aa

and aae effects (Table 4).

Stability evaluation of QTL derived from ‘Hefeng 25’

In this study, additive effects of eight QTL, linked to

Satt233, Satt460, Satt428, Satt302, Satt354, Satt555,

Satt527, and Satt153) from ‘Hefeng25’, were detected in

three different populations. (Table 3). The scale of a effect

of QTL, derived from ‘Hefeng 25’, was diverse in different

populations. For example, a effect of QTL, associated withT
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Table 3 Additive and additive 9 environment interaction effect of QTL associated with seed weight at different populations

QTL source QTL LG (Chromosome) Marker interval Population ad a 9 E1a a 9 E2b a 9 E3c

Hefeng 25 swHCA2-1 A2 (Ch 8) Satt233–Satt538 HC 0.27* 0.11* -0.17* 0.32*

Hefeng 25 swHMA2-1 Satt233–Satt177 HM 0.39*

Hefeng 25 swHBA2-1 Satt538–Satt233 HB 0.62** 0.76** 0.17*

Hefeng 25 swHCC2-1 C2 (Ch 6) Satt100–Satt460 HC 2.01** 0.40* -0.89* 0.87*

Hefeng 25 swHMC2-1 Satt100–Satt460 HM 0.69** 0.39*

Hefeng 25 swHBC2-1 Satt460–Satt202 HB 0.79** 0.26* -0.27*

Hefeng 25 swHCD1b-1 D1b (Ch 2) Satt579–Satt428 HC 1.64** -1.02** 0.19* 0.76**

Hefeng 25 swHMD1b-1 Satt282–Satt428 HM 0.30*

Hefeng 25 swHBD1b-1 Satt282–Satt428 HB 1.34** 0.65** 0.76**

Hefeng 25 swHCH-1 H (Ch 12) Satt181–Satt302 HC 0.30 * -0.37*

Hefeng 25 swHMH-1 Satt253–Satt302 HM -0.19* 0.38* -0.69**

Hefeng 25 swHBH-1 Satt293–Satt302 HB 0.49*

Hefeng 25 swHCI-1 I (Ch 20) Satt354–Satt571 HC -0.87** 0.88** -0.32*

Hefeng 25 swHMI-1 Satt354–Satt419 HM 0.22* 0.16*

Hefeng 25 swHBI-1 Satt354–Satt440 HB 0.58 **

Hefeng 25 swHCK-1 K (Ch 9) Satt349–Satt555 HC 1.34** 0.67** 1.20**

Hefeng 25 swHMK-1 Satt555–Satt046 HM -0.28*

Hefeng 25 swHBK-1 Satt555–Satt046 HB 0.78** -0.89** -1.25**

Hefeng 25 swHCL-1 L (Ch 19) Satt527–Satt561 HC 0.59**

Hefeng 25 swHML-1 Satt527–Sct_010 HM 1.04** 0.45** -1.02**

Hefeng 25 swHBL-1 Satt527–Satt561 HB 0.55**

Hefeng 25 swHCO-1 O (Ch 10) Satt479–Satt153 HC 0.79** -0.87** -0.95**

Hefeng 25 swHMO-1 Satt153–SattSat_106 HM -0.67** 0.20*

Hefeng 25 swHBO-1 Satt153–Satt109 HB -0.17*

Hefeng 25 swHCA1-1 A1 (Ch 5) Satt382–Satt211 HC -0.76** -0.48**

Hefeng 25 swHBA1-2 Satt454–Satt382 HB 0.97** 0.28* -0.59**

Hefeng 25 swHCA2-2 A2 (Ch 8) Satt424–Satt390 HC 1.34** 0.21* 0.56** -0.67**

Hefeng 25 swHBA2-2 Satt177-Satt424 HB -0.30* -0.49** 0.89**

Hefeng 25 swHMB1-1 B1 (Ch 11) Sat_123–Satt583 HM -0.20*

Hefeng 25 swHBB1-1 Satt583–Sat_096 HB -0.87**

Hefeng 25 swHCD1a-1 D1a (Ch 1) Satt383–Satt468 HC 0.89**

Hefeng 25 swHMD1a-1 Satt502–Satt383 HM -0.31*

Hefeng 25 swHCE-1 E (Ch 15) Satt263–Satt491 HC 0.30*

Hefeng 25 swHBE-1 Satt263–Satt268 HB -0.98**

Conrad swHCA2-3 A2 (Ch 8) Sat_181–Satt409 HC -0.15*

Conrad swHCB1-1 B1 (Ch 11) Satt453–Sat_123 HC -0.79** -0.88** 1.09**

Conrad swHCC2-2 C2 (Ch 6) Satt489–Satt557 HC -0.97* -0.66** -0.59**

Conrad swHCC2-3 C2 (Ch 6) Satt307–Satt277 HC 0.33*

Conrad swHCD2-1 D2 (Ch 17) Satt615–Satt301 HC 0.32* -0.49*

Conrad swHCJ-1 J (Ch 16) Satt380–Satt183 HC -0.30*

Maple Arrow swHMM-1 M (Ch 7) Satt150–Satt201 HM 0.98** -1.17 *

Bayfield swHBA1-1 A1 (Ch 5) Satt449–Satt454 HB 1.29** 1.21** -0.98** 0.63**

Bayfield swHBB2-1 B2 (Ch 14) Satt070–Satt596 HB -0.27* -0.83** -1.07*

Bayfield swHBC1-1 C1 (Ch 4) Satt190–Satt195 HB 0.20* 0.67** 0.80**

Bayfield swHBC2-2 C2 (Ch 6) Satt277–Satt376 HB 0.95** 0.94 ** -0.91**

Bayfield swHBD1a-1 D1a (Ch 1) Satt198–Satt168 HB 0.25*

a at Harbin in 2007
b at Harbin in 2008
c at Harbin in 2009
d additive effect
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Satt460, was 2.01 in the HC population, 0.69 in the HM

population, and 0.79 in the HB population, respectively

(Table 3). The impact of different environments on ae

effect of QTL was higher than that of different populations.

In the present study, both the aa and aae effects of the

QTL derived from ‘Hefeng 25’ were identified in the 3 or 2

of the three populations, and the number of QTL epistatic

with other QTL was different across different populations

(Table 4). For example, six, three, and three epistatic

pairwise QTL interacting with the QTL linked to Satt233

was found in HC, HM, and HB populations, respectively.

The aa and aae effect of the epistatis QTL were 0.23–0.45,

0.16–0.87, 0.25–1.07, and 0.17–0.45, 0.17–0.37, 0.19–0.89,

respectively.

GT biplot analysis (Yan 2001) showed the 13 QTL with

beneficial alleles from ‘Hefeng 25’ detected in three or two

populations explained 73 % of the total variation. Figure 1

indicated that two QTL (Satt428 and Satt460) had highest

performance and stability across multiple environments

and populations. The QTL linked to Satt555, Satt424,

Satt382, Satt354, and Satt183 also had above-average

performance and stability across multiple environments

and populations. The QTL linked to Satt383, Satt583,

Satt233, Satt263, Satt302, and Satt527 had the lowest-

average performance and stability across multi-environments

and multi-populations. Furthermore, the performance of

different QTL on each environment or population was

evaluated. With the QTL linked to Satt460, Satt555, Satt383,

Satt263, Satt527, and Satt153 as the corner QTL, three

environments and two populations (HC and HM) fell in the

sector in which two QTL (linked to Satt460 and Satt428)

were the strongest for these three environments and two

populations, respectively (Fig. 2). Two QTL (linked to

Satt383 and Satt555) were the strongest for the HB

population.

Discussion

Rapid advances in genomics have identified and analyzed

about 36,000 genes in soybean (Schmutz et al. 2010;

Severin et al. 2010). However, the usefulness of genomics

data for crop breeding and improvement was dependent

upon the identification of candidate gene markers for MAS

via map-based cloning or association analyses (Varshney

et al. 2005; Lightfoot 2008; Guttierez-Gonzalez et al.

2010). Seed weight is an important yield component of

soybean (Burton et al. 1987). Hence, there was interest in

understanding the genetic control of seed weight in soy-

bean, especially the beneficial alleles from ‘Hefeng 25’, a

superior cultivar in Heilongjiang Province of China.

Because seed weight of soybean was affected by environ-

ments and genetic backgrounds, increasing the genotype

selection intensity by MAS could improve the selection

efficiency.

To be useful to a breeding program, QTL need to be

stable across environments and genetic backgrounds

(Brummer et al. 1997). Stability can be assessed by eval-

uating many populations across several environments to

determine if a particular QTL is detected in each popula-

tion or environment. In this study, three sets of RIL pop-

ulations with one common male parent (‘Hefeng 25’) were

analyzed for QTL that associated with seed weight across

multi-environments. A total of 18, 11, and 17 QTL were

identified in HC, HM, and HB populations, respectively.

An individual QTL explained phenotypic variations ranged

from 3 to 28 % for seed weight in different environments

and populations. However, most loci explained less than

10 % of the variation (Table 2). The low level of pheno-

typic variation explained by these QTL indicated the

quantitative nature of seed weight, which was similar to the

findings of other studies (Mansur et al. 1996; Mian et al.

1996; Hyten et al. 2004; Zhang et al. 2004). QTL specific

to one environment were also reported by other studies for

different traits (Price et al. 2002; Li et al. 2003). Many

instable QTL detected in different environments or genetic

backgrounds were detected (Table 2) in this study, which

was due to weak expression of the QTL, QTL by envi-

ronment interaction in the opposite direction to a effects

and/or epistasis (Table 3, 4). For example, swHCE-1 and

swHCA2-2 were subject to these effects. Therefore, the

information of QTL by environment interaction should be

considered if MAS was to be applied to the manipulation of

quantitative traits.

Four QTL swHCA2-1, swHCA2-2, swHCC2-1, and

swHCD1b-1 linked to Satt233, Satt424, Satt460, and

Satt428, respectively, in the HC population across all three

environments. The QTL swHCA2-1 was reported previ-

ously in V71-370 9 PI407162, Noir 1 9 Archer (Hyten

et al. 2004). The QTL swHCA2-1 was reported previously

in Minsoy 9 Noir 1 (Hyten et al. 2004). The QTL

swHCC2-1 was also reported previously in Young 9

PI416937; Noir 1 9 Archer; and Essex 9 Williams

(Hyten et al. 2004). The QTL swHCD1b-1 was also

reported previously in Essex 9 Williams (Hyten et al.

2004).

The sole QTL swHBA1-1 (linked to Satt449) in the HB

population that could be found in all three environments

was reported previously in Noir 1 9 Archer (Hyten et al.

2004). Therefore, all the QTL stable across environments

have been confirmed, which adds to their usefulness in

MAS even across multi- environments.

Seven QTL (Satt460, Satt428, Satt302, Satt354, Satt555,

Satt527, Satt153) could be detected in all three populations

in some environments. These QTL might be useful for

MAS in a particular location.
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Two QTL (Satt460 and Satt428) could be identified

across three environments and three RIL populations. The

QTL swHCC2-1 and swHCD1b-1 had been reported pre-

viously (Hyten et al. 2004). These two QTL will be the

primary targets for MAS to improve soybeans in China and

the US. The gene underlying the QTL could be cloned

based on its map position.

Teng et al. (2008) analyzed seed weight in six different

stages with a RIL population derived from a cross between

‘Dongnong 594’ and ‘Charleston’, and found the QTL

swHCC2-1 associated with Satt460 could be detected

across six different developmental stages and three envi-

ronments. It should be noted that the germplasm reported

by Teng et al. (2008) was of different parentage. This

suggests the QTL linked to Satt460 was weakly influenced

by genetic background and environment and might be more

effective in MAS.

The stable QTL were responsible for large a effects. As

suggested by Tanksley (1993) and Zhuang et al. (1997),

QTL with higher a effects are more likely to be stable

across multiple environments (Table 3).

The importance of epistatic action of gene expression in

complex traits had been demonstrated in previous studies (Li

et al. 1997; Li et al. 1998; Ohno et al. 2000; Guttierez-

Gonzalez et al. 2010). Our results indicated that epistatic

effect accounted for a significant component of seed weight

QTL in the three populations, similar to the findings of

previous reports (Carlborg et al. 2005; Wilfert and Schmid-

Hempel 2008) (Table 4). Because of the obvious contribu-

tion by epistatic interaction, QTL with significant epistatic

effects should be considered during seed weight breeding in

soybean.
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